\begin{tabbing} (\=(((((((HypSubst ({-}1) 0) \+ \\[0ex]CollapseTHENM (RWO "length\_append" 0))$\cdot$) \\[0ex]CollapseTHENA ( \-\\[0ex](Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok SupInf:t \\[0ex])\= inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN (InstConcl [$\parallel$$L$$\parallel$]))$\cdot$) \\[0ex]CollapseTHEN ( \-\\[0ex](Auto\_aux (first\_nat 1:n) ((first\_nat 2:n),(first\_nat 3:n)) (first\_tok SupInf:t \\[0ex]) inil\_term)))$\cdot$ \end{tabbing}